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FLUX-CORRECTED TRANSPORT ALGORITHMS

FOR TWO-DIMENSIONAL COMPRESSIBLE MAGNETOHYDRODYNAMICS

1. INTRODUCTION

Flux-corrected transport (FCT) [1-9 was originally conceived, and has been developed over

the years, as a method for accurately solving the conservation equations of Eulerian hydrodynamics

without violating the positivity of mass and energy, particularly near shocks and other discontinu-

ities. This is achieved by adding to the equations a strong numerical diffusion, which guarantees the

- positivity of the solution, followed by a compensating antidiffusion, which reduces the numerical

error. The crux of the FCT method lies in limiting ('correcting') the antiiffusive fluxes before

they are applied, so that no unphysical extrema are created in the solution. The effect of this flux-

correction procedure is to provide as accurate a solution to the original equation as is consistent

with maintaining positivity and monotonicity everywhere.

Recently, a prescription was given [10] for integrating the hydromagnetic equation of magne-

tohydrodynamics (MHD) using FCT techniques. The discrete values of the magnetic-field compo-

nents are placed at the interface locations of the finite-difference grid. In this way, the divergence-

free character of the magnetic field, as expressed by the discrete integral form of Gauss's law, is

simply and strictly preserved. It was shown that the monotonicity constraint of FCT, on the other

hand, cannot be strictly enforced without producing an excessively diffuse solution for the magnetic

field. A flux-corrector was described which constructs the total antidiffusive flux as the sum of

corrected partial fluxes. Each component of the magnetic field contributes a partial flux to the

total, and its contribution is limited independently of those due to the other field components. The

solution so obtained has remaixied well behaved even in severe numerical test cases.

In this report, a pair of efficient, accurate algorithms for integrating generalized continuity

and hydromagnetic equations in two spatial dimensions will be Lsc: hed. The low-order, diffusive

schemes of both the fluid and field solvers have phase and amplit, errors that are second order

in the grid spacing at long wavelengths, and axe absolutely stable for Courant numbers less than

1. The errors in the high-order, dispersive schemes are fourth order. Several numerical examples

will be presented and discussed.

Manuscript apprmvc July 7, IQ89.
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2. ALGORITHMS

Geometry and Conservation Properties

The conservation equations of Eulerian magnetohydrodynamics take the general form

Op
0- + V- (Pv) = 81 + s2- V83 + V- 84 ,

= Vx(vx B)+V x 6s,

where p is a fluid variable (mass, momentum, or energy density) being time-advanced, v is the

fluid velocity, B is the magnetic field, and a,, 82, 83, 64, and ss are source terms. In the absence of

sources, Eqs. (1) reduce to the continuity and ideal hydromagnetic equations,

OPT + V. (pv) = 0,
Dt (2)
-B - V × (v × B).
Ot

The integral conservation relations corresponding to Eqs. (2) are

8"t/ pdV=-fsp
v d S ,

B.dS= jvxB.dl,

where in the first integral V is any volume of fluid bounded by the closed surface S, and in the

second S is any (open) surface bounded by the dosed contour C.

The geometry of a finite-difference representation of Eqs. (1) is shown in Fig. 1. It has long

been recognized that the continuity equation can be integrated conservatively by evaluating the

flux densities pv at the interfaces of the spatial grid and using a discrete representation of the

integral relation (3a). For example, a forward differencing of the time derivative and an explicit

treatment of the spatial derivatives in a two-dimensional problem lead to

([p - p o] V ) i, A t = (p ° v, A ), _. j, - (p ° v, A ),+ j(

+ (p~vy Al)ijI - (p vtAy)ij+I

where p0 and pC are the values of the fluid variable before and after the convection, respectively, A.

and A. are the areas of interfaces normal to the x and y directions, and At is the time increment. In

a summation of the results (4) over any collection of cells in the system, the contributions of fluxes

evaluated at the common, internal interfaces cancel pairwise. The integral conservation relation

(3a) in its discrete form then holds for every subvolume of the system.
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Figure 1. Geometry of the finite-difference representations of the generalized continuity equations (left
panel) and hydromagnetic equation (right panel) of conservative, Eulerian magnetohydrodynamics.

(3a) in its discrete form then holds for every subvolume of the system. This result also is true of

the generalized continuity equation (la), if only conservative sources 84 are present.

A conservative integration of the hydromagnetic equation is similarly effected (11,12] by placing

the components of the magnetic field at the cell interfaces, as shown in the right panel of Fig. 1.

The flux densities v x B are evaluated at the cell edges, and a discrete representation of the integral

conservation relation (3b) again is used. If v. and B_ both vanish, discretizing in time as before

yields
([B, - B.] A.)+, = ([vB - v.B,] L.),+ ,j_j

- ([vB - v.B,] Lz),+ij+ 1 (

([B - B,] A),+ ,t = ([v,,B - v,,B.] L-.),__22

- ([v,,B - v,,B,] L.),+,+ ,

where B ° and BC are the field values before and after the convection, and L, is the length of an

edge oriented in the z direction. Due to the pairwise cancellation of fluxes at common edges, the

integral relation (3b) in its discrete form holds for any surface in the system. This result is also

true of the generalized hydromagnetic equation (1b), whose conservative source term ss is likewise

evaluated at the cell edges. For the special case of a closed surface, all of the edge fluxes cancel

and the solutions obey the discrete equivalent of

JB .dS = 0. (6)
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Consequently, if Gauss's law in its discrete integral form is satisfied by the field configuration

initially, it is satisfied for all time.

Thus, the conservation properties of both the generalized continuity and hydromagnetic equa-

tions (1) can be simply and strictly imposed on their discrete solutions by a judicious choice of the

finite-difference representation used to solve them. A pair of algorithms exploiting this representa-

tion in two spatial dimensions have been developed, and will be described in the remainder of this

section.

Solution of Generalized Continuity Equations

The algorithm for continuity equations is the natural extension to two dimensions of the one-

dimensional, low-phase-error algorithm ETBFCT [4,6]. Guirguis [7] previously attempted such

a generalization, but his scheme suffered from excessive diffusion. The key innovation introduced

here is the inclusion of nonvanishing off-diagonal terms in the antidiffusion tensor. Those terms

allow the phase and amplitude errors in the F;gh-order solution to be reduced simultaneously to

fourth order in the mesh spacing. If only the diagonal terms are nonvanishing, at least one of the

errors must increase to second order, as in Guirguis' two-dimensional scheme.

All of these earlier algorithms, and the new one as well, axe one-level schemes, whose errors

thus are first order in the timestep. To achieve second-order accuracy in time, a predictor/corrector

integration is carried out using the one-level scheme for both the half and whole timesteps. Zalesak

(5] instead used a two-level, leapfrog-trapezoidal scheme whose errors are second order in time and

fourth order in space, and thus is comparable in accuracy to the new algorithm presented here.

The integration schemes consist of convection, diffusion, flux-correction, and antidiffusion

stages. For the continuity equation, two intermediate solutions convected solely along x and y,

respectively, axe needed in addition to the solution convected in both directions, viz.,

- Fjc,+j (7)-i~+ i
ppTij =-- p -Vij + F_ - F , (7)

tj 13 i+jJ ij-1

where V4 is the initial cell volume. The convective fluxes along z are given by

+t = po+j Ac i+ ux i+ (8)
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in which the interface fluid density is calculated as the average

P,+0 i (P,5 + pO+,j)

and the velocity of the fluid with respect to the moving grid is, in cartesian coordinates,

tLvt+j = -~~j X I - X

Here, and +I are the initial and final positions, respectively, of the i + Ith interface along x.

The interface areas AO j, are time- and space-centered, and can be chosen to preserve a uniform

field p under an arbitrary grid rezoning with zero fluid flow [4,6]. The choice

where

,! ,= o,f o,f
j~ ~ Yj 12 j-v'

satisfies this requirement. Analogous expressions are used to calculate %he y convective fluxes.

The diffusion stage includes the compression due to grid motion and ensures the positivity of

the low-order solution,

pfdi = pfVe +o d +Fd -Fd
Fjj - I- j _ F 4j+ , (9)

where Vi. is the final cell volume. The diffusive fluxes along x are calculated from

FI'j = VX=,+ij (pfj p +,j) V.+1., (10)

in which the diffusion coefficient is

v11+j = 6 + 3 . i+I' (11)

the signed Courant number for the fluid motion along x is

Ei+ij = 2 1 uijAcj+ j A t ,

and the interface volume is

5+,



Adding the contributions of the source terms completes the calculation of the low-order solution,

_o V - po V. + at

+ ~t ~ -2 (12)+ At (A.'i+~j S4 .i+,Lj - Ac j_j _s4 .=-j (1

Ac.Ac2i+ A + 
8 4y ij+i - A c ,

in which the gradient of 83 has been taken along z, for definiteness.

The antidiffusion stage, if performed without flux-correction, would yield the high-order so-

lution,

' I j + F = + (13)

The antidiffusive fluxes along z are given by

17 + A . + I cixl - P J( 4

= + (P=+ - P+j,

and the antidiffusion coefficients are

=~z+ 6 6 -Ti(15)11

The Courant number at the x interface for flow in the y direction is conveniently calculated as the

average

C1  - E ij~ + IE i+I ~ + fy ij+1 + Ey i+lj+4)Yi+fj = ii- +2+1- +2) + i1.+

as is the convected solution at the cell edge,

1= - (F + P+Ii + P+I + pc

The cross-derivative terms, those with coefficients p., and , make the key contributions toward

reducing the error in the high-order scheme.

In the flux-correction stage, the first step is to establish the allowed extrema of the final

solution from the nine-point comparison

pm&X = max (, ,ij,- , fi+lj-,j_-j,Pij, fii+lj, fiijj+j, fiij+1, fii+lj+1) (16)
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Here, j may be -n to be simply the low-order (monotonic) value

corresponding to the 'strong' flux-corrector originally introduced by Boris and Book [1]. Alterna-

tively, it may taken to be any physically well-motivated upper bound, e.g.,

= max (p -,p ,

as suggested by Zalesak [5]. Analogous expressions are used to establish ppi.

Second, those antidiffusive fluxes that axe directed downstream with respect to the local gra-

dient, i.e., which act to smooth the profile rather than steepen it, are cancelled. Thus, set

F = 0 if F +, (PI+Ij - P~j) < 0
and Fa+ ,) < 0 (17)

or F7j (p~, - < 0I 8 -1j) < 0.

Such fluxes contribute to the formation of dispersive ripples, degrading the quality of the solution.

The third step is the calculation of the total antiiffusive fluxes into and out of each cell,

= max (F,*, ,,O) - min (F aj,, ) + max (F _ ,O) - min (Fun -,O) ,

and the maximum allowed fluxes into and out of the cell,

Q= (p- Pi)
, ( j ra-n7 8.7

The ratios of these two quantities determine the fractions of the incoming fluxes that can be applied

without causing an overshoot or undershoot in the final solution,

R- = min(l'Q+fe+)(

respectively.

Fourth, the flux-correction coefficient for each antidiffusive flux is calculated as the minimum

fraction which causes neither an overshoot in the cell downstream from the flux nor an undershoot

in the cell upstream,
min (R+,,R7), if (21)

2j+ - Irmin (Rtj, R- Ij) , otherwise.

7



The fifth and last step is to reduce the fluxes by these fractions, i.e.,

Fi'+ j = Cj+ .F+,j. (22)

Applying the corrected fluxes to the low-order solution yields, finally,

P13 13 = + j - FjI + F'j_ -- Fi+ , (23)

the desired solution to the generalized continuity equation (la).

The positivity of the low-order solution pi, combined with the restrictions imposed by the flux-

corrector, ensures the positivity of the final solution pf. Eq. (12) for pj can be explicitly evaluated

in terms of the neighboring values of p0 and c,. It is then easily established that positivity is

guaranteed, in that the coefficient of each of the p*'s is nonnegative, for a locally uniform flow field

satisfying 1 < 1. In the extreme case of fluid concentrated in and flowing outward from a single

cell, i.e., a point blast wave, the limiting value which ensures positivity is considerably smaller,

S,,,,I(V - 3) 0.15.

The accuracy and stability properties of the algorithm are analyzed by specializing to the case

of a unJorm, cartesian mesh and a uniform velocity field [3]. The exact solution to the continuity

equation for a uniform velocity is p(x,t) p,x - vt,O). During the time interval At, an initial

Fourier mode

p(x,0) = pkek'x (24a)

evolves to

p(x, At) = poeik(xv O. (24b)

The exact solution (24b) can be compared with the numerical solutions (12) and (13) obtained

when (24a) is used for pO. In the long-wavelength limit k --. 0, the phase and amplitude errors are

found to be second order in the mesh spacing for the low-order solution (12), and fourth order for

the high-order solution (13). The amplification factor for (12) is less than unity for all wavenumbers

k, and thus the algorithm is completely stable, for Courant numbers 1Ic,,y < -
2"

Solution of the Generalized Hydromagnetic Equation

The algorithm for the hydromagnetic equation is similar in many respects to that for continuity

equations. Here, intermediate low-order solutions B" and B"', to which only the B - and By-

dependent fluxes contribute, respectively, are needed. These solutions are not divergence-free, but

- - ii lia It i | I 8



they are used solely to correct their associated partial antidiffusive fluxes F,," and Fr'. After

correction, these partial fluxes are combined to obtain the total corrected antidiffusive flux F'. As

discussed in greater detail elsewhere [10], a flx-corrector which limits the total antidiffusive flux

F a with respect to B, and B. simultaneously tends to be very restrictive, producing an inaccurate,

diffuse final solution.

In the convection stage, there results

B Ao = B o  Ao  Fx - Fcx
zi+ij xI41i T'+43 Wt+4J '+4Ji- 1+92+4'

Bca + I AOij+I B- i+ A vij+ + F!I2 l ,- F+ +
21+ 1V3+ 2 - 2 j 2  'i+4'+

(25)
Bc AO -BO A0  -Fc

Xi+ j Xi+ j Xi+f.i - , qj i41-f4 +,
B c  Ao =BYi,+f i=+f B = A'Y ,i. I- F +I - Fc+ I,+,
BC A0  B 0  A0

where A0 i+iand AVi+ are the initial interface areas. The convective fluxes due to B, and B.

separately and jointly are given, respectively, by

F 1  =BO L c (2+i+Jj+J C + i+ z+ i++ 2
F-+ BO 4Ci+ +Jj+ uJ UZ+ j+ I At, (26)

The edge magnetic fields are calculated as the averages

B+Oj+ - ( i + Bi+ j+ ) ,

B0  1 (B.i+I+ B ° 0

0,+03+1 = \2 + I+12+

and the velocity of the fluid with respect to the moving grid is, in cartesian coordinates,

= V ,,,- 1  f Yo04)

The edge lengths Lci+ Ij+ 1 are to be time- and space-centered.

The diffusion stage ensures the monotonicit, of the low-order solution and includes the com-

pression due to grid motion,

Ed A = 0 1
1

0  d FdzBdY A f -c o + _ Fd4Xi+Jj Xi+Jj = Bi+ j' XS+2J F + I -  j+ .+1,

11t3+ ,,ij+4 1 Oij Fdvlj I - F +4

(27)
Bd A -B Ao F d  Fd

Xi+ i xii Xi+= j ,X i+4 j + - + ,+ I

Bd+A + = B +A + Fd_ i+1 - S+ j+k .

. .'j+ + I j+ 113+2l Y'3+2 2lll l 2 2



Here, A+ and Af are the final interface areas. The diffusive fluxes are given by

d = - A,++Fd =~ Vppi~ij+ - B

FdY P (Y j - B f(28)

1+ 0+1 '+4j12 '+j+

For the diffusion along z, the coefficient is

1 E2  (29)

the signed Courant number is

Xi0+ + A, 1 UXi+i At,

and the edge area is the average

1fA Af

Analogous definitions apply along y. Adding the contributions of the source term yields the low-

order solutions,
B1  A Bdf A 1  F F

B' A1 , Bdx. A +Fj + -FB.i +A ij+ V S.-+j ptj+j F2_ +-
(30)Bt' !A = B A1l  F~~

1+*2 A Zi+]j zi+4j zt+]j-F+]_+ ++,B1 A1  =Bd A - FF
XiJ+j XiJ+Ij ~i+j Xij + 2j- 1 + ij+ 1 '

Ytj+i~ ~ j"j+ + i Vij+ 2 y',+4 2-,+

where
F+ jj+ j = At Le + j+ jss, 2 + j+

z 2 2

is the edge flux due to the source term s.

The high-ord-r solutions are given by

Bh , A! =B' A1  - a +Fi3 1 ,,j z w+ lp xz ai+2(31)

:A + ij+B j+ + F - 0+ i+i+

10



The uncorrected partial and total antidiffusive fluxes are

i- B+ C+F, i ='=-+ij+i (,i+fji. - Bc + +

Bc -BP ,

where the coefficients for antidiffusion along x are

1 1X

= 6 61+ '+12 (33)

11

=2 ypi-d) +fj+ 21

4 \Ztjj = i~+ t~j x+j1

The coefficients for antidiffusion along p and the convected solution for at the x interfaces are

calculated analogously.

In the flux-correction stage, the permitted extremal values of the solutions are caculated from

Bm i = max (Bit_,~+ ,z+iI
= max

For the strong flux-corrector, set

B = ax(,+ =f3,

and for the weak flux-corrector,

"= max B s. + ),
& uj+ -j max (B_' j+ j, B_1j+ ) ,

mn= max ran

Bi+ j and B""+, are calculated similarly.
xi-4j 2

11



Those partial antidiffusive fluxes that are directed downstream are cancelled according to

Fax =0 if Fx Blz

and a + (B'',++ 2 - B,+ 1 +,) <0

or Fax L (Bj+f, - B'I+X ,_s1 ) < 0,
(35)

Fa=0 if "F78 (j, (ELy ..j~ -B'l .. ' < 0 (5

and F, B_ ; Bly. ) < 0

or Fay-'~+ (B'y"~ - B7 .- j~ < 0.

Then, the ratios of the maximum partial antidiffusive fluxes into each interface,

F= max ,- min (Fx +j,0),

Pt+= max (Fay +,0) - min (FF + ,0),(

to the maximum allowed fluxes into the interfaces,
t,= (B, - Bv,+ i) Af+2 (37)

= ?+ j S y )A (31 ,

determine the fractions of the incoming partial fluxes that can be applied without causing over-

shoots,
R+ =

+2 (38)
R+ mn ,+ +

The fractions R-+0 and R-+, of the outgoing fluxes that can be applied without causing under-

shoots are calculated similarly.

The flux-correction coefficients for the partial antidiffusive fluxes now are determined as the

minimum fractions which cause neither overshoots in the interfaces downstream from the fluxes,

nor undershoots in the interfaces upstream,

m R+ R- , if Fax > 0;mn i+ jlR j i + i+ O

in (R+ ,R j+i), otherwise; (39)
mnR+

mn (R+z,+,R +j), ifF '+' > 0;
CF,+f = min (R +I,R-+1 3 +), otherwise.

12



Reducing the partial fluxes by these fractions and combining them to obtain the total corrected

antidiffusive flux yields

F+j+ a -- Czj+ Frj+ ax

Pay = C +F ' (40)
= _F +i+j

Pi frGy -Paz

Finally, the corrected fluxes are applied to the low-order solutions to get

B+ A+ - B'j+jjA.1+jj - P +jjj + Pi+j j * z ~ -j +0+1 (41)

B 1  A 1  = B A !  - F0Vij#+1 Yij+1 = vi+i Vi+ I + 17- jj+ j

the desired solution to the generalized hydromagnetic equation (1b).

The accuracy and stability properties of this algorithm are identical to those for the algorithm

for continuity equations. A key step in the analysis is the elimination of B* in favor of B', which

is effected by using the divergence-free constraint. For the Fourier mode

B(x,O) = Boe'k 'x ,

the discrete form of Gauss's law becomes

sin 3  0 sin Io0

2 A

where, e.g., Ax is the mesh spacing along x and I. = k=Ax. There results

B 1,h B h  I h

Bk. B~k P '

so that the errors in the magnetic field are second order for the low-order solution (30) and fourth

order for the high-order solution (31), and the algorithm is completely stable for Courant numbers

less than 12"

3. EXAMPLES

The new FCT algorithms described in the previous section have been programmed in single-

precision FORTRAN and optimized for use on NRL's Cray X-MP/24. Internal storage in these

routines is minimized by stepping through the mesh one line at a time, so that no full, two-

dimensional work arrays are required. Consequently, the modules use little more memory than a

13



MASS DENSITY

INITIAL CONFIGURATION FCT FLUID SOLVER

Figure 2. The mass density p for a passive advection test is displayed in its initial state (left) and in the
final state produced by the new FCT fluid solver (right). Only the 50 x 50 subdomain centered on the
slotted cylinder is shown. The axis of rotation is marked by the solid dots in the plots of the initial state.
The mass density is contoured at 10%, 20%, ... , 90% of its peak initial value.

corresponding FCT routine for one-dimensional continuity equations. In hydrodynamical advection

tests on modest-sized (100 x 100) problems, the multidimensional fluid solver needed only about

10% more time to obtain a solution than did the one-dimensional solver used in operator-split

mode (3 us cell1 timestep- 1 ), and its solution was highly superior (cf. (5,6]).

The new algorithms will be applied here to some kinematical and dynamical problems of

hydrodynamics and hydromagnetics. The first test is the rigid rotation of a slotted cylinder, as

14



calculated with the new fluid solver. Zalesak [5,6] introduced this test to compare operator-split

and fully multidimensional solutions for an incompressible flow field. Initial conditions for the

calculation are shown in the left panel of Fig. 2. The cylinder rotates rigidly in the counterclockwise

direction at an angular rate w, whence

Vz = -Wll, VU1 = +WX,

where the origin of the cartesian coordinate system is placed on the axis of rotation. The calculations

were performed on a 100 x 100 mesh, with the cylinder initially centered in the upper half plane

and its radius set at 15 zones. A slot of width six zones runs through its center, with a bridge of

the same width left at the top, joining the two halves of the cylinder. The Courant number is 0.25,

so that 1256 timesteps are required for one complete rotation in the plane.

The solution obtained by the FCT fluid solver is shown in the right panel of Fig. 2. The

quantitative error in the mass density, calculated from

analytic numeric

1,Ip!:.rJYticI

is 25%. Both the filling of the slot and the erosion of the bridge are limited to less than 10%. In

contrast, an operator-split integration with the one-dimensional routine fills the slot and erodes

the bridge by more than 20%. Qualitatively, the multidimensional solution compares very favorably

with Zalesak's leapfrog-trapezoidal results, as expected from the similar error properties of the two

algorithms.

Turning now to the hydromagnetic tests, a commonly employed alternative to solving directly

for the magnetic field in MHD simulations is to use a vector potential representation,

B=VxA,

whence the generalized hydromagnetic equation (1) becomes

BA
xvxVxA+ss.

In two dimensions, only the component of the potential along the symmetry direction is needed,

and this equation can be reduced to

00
Ft- +  V -is, (42)

15



where the flux function 0 is a product of the symmetry component of the potential and a coordinate-

system-dependent geometrical factor. The flux function is a convenient primitive variable, because

algorithms for generalized continuity equations can be modified to integrate advection equations

such as Eq. (42). Also, it is a useful diagnostic since it can be shown that

B .VO= 0,

i.e., surfaces of constant 0 are magnetic surfaces.

In the remaining examples, direct solutions of the hydromagnetic equation (1) are calculated

using the new FCT field solver. They will be compared with indirect solutions obtained by inte-

grating Eq. (42) for the flux function using a modified version of the new FCT fluid solver. The

discrete values of 0 are placed at the cell edges (i + i •+ 1), for consistency between the two

calculations. The associated vector potential then is conservatively differenced to yield values of

the magnetic-field components at the cell interfaces.

The second test is the rigid rotation of a current-carrying cylinder, analogous to the slotted-

cylinder test for the fluid solver. In cartesian coordinates, the flux function and the symmetry

component of the vector potential are identical, 0 = A,. Initial conditions for the calculation are

shown in the top panel of Fig. 3. The potential, magnetic field, and current density within the

cylinder are given by

A= = ZBo,=2

To
J. 2Bo

ro

where (r, 4, z) is a cylindrical coordinate system centered on the cylinder of radius ro and peak field

strength B 0 . A sheath of return current at r = ro neutralizes the current carried in the interior, so

that A 5 , B#, and J, all vanish for r > rO. The other parameters of the calculation are the same as

for the test of the fluid solver.

Figure 3. [Facing page] The vector potential A, (left) and current density J. (right) for a passive advection
test are displayed in their initial state (top) and in the final states produced by the new FCT solvers for
the magneLic field (middle) and vector potential (bottom). Only the 50 x 50 subdomain centered on the
cylinder is shown. The axis of rotation is marked by the solid dots in the plots of the initial state. The vector
potential is contoured at 10%, 20%, ... , 90% of its peak initial value. The current density is contoured at ±
10%, -± 30%, ... , + 90% of its initial interior value, with positive (negative) percentages represented by the
solid (dashed) lines.
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The solutions obtained by the FCT field and potential solvers are shown in the middle and

bottom panels, respectively, of Fig. 3. The errors in the vector potentials are very small in both

cases, 6% for the field solver and 4% for the potential solver. Although the field solver dearly

preserves the symmetry of the flux surfaces better, yielding the better qualitative appearance, its

solution is somewhat more diffuse, which accounts for its lower quantitative accuracy. The errors

in the magnetic fields are essentially identical for the two solvers, at 25%, and are the same as

obtained in the similar hydrodynamical test. For the field solver, this error reflects the difficulty

in advecting a discontinuous function (the magnetic field at r = ro) using an Eulerian difference

method. For the potential solver, on the other hand, the error reflects the inaccuracies in the

numerical derivatives of a smooth function (the vector potential) which has been accurately time-

advanced by a monotonic scheme. The latter error is further amplified in the higher derivatives,

sufficiently so that the potential solver yields a current density that is less accurate than does the

field solver, by 90% to 79%. While both solutions for the current density show local depressions

inside the cylinder, the potential solver produces the more severe fluctuations, including a reversal

near the axis of symmetry whose amplitude exceeds 70%. The solution provided by the field solver

is both qualitatively and quantitatively superior, although it again suffers in the error comparison

because its profile is not as sharp.

The third test is the self-similar spherical expansion of a strong shock wave and trailing

magnetic bubble out of the gravitational well of a star [13,14]. In this dynamical problem, the self-

similar character of the expansion is maintained by a balance between pressure and magnetic forces

in the colatitudinal direction and between pressure, magnetic, gravitational, and inertial forces in

the radial direction. The simplest expansion is an inertial flow, whence
="

t

At time to, the shock and its associated contact surface coincide at radius to; at later times, their

positions are given by

ro to

rc(t) (t

respectively. A magnetic bubble is embedded behind the contact surface, and the flux function

= r sin OA initially satisfies

0(r'O to) 0 (r2 - r) (r - ri) sin 2 , if r, < r < r2;
0 , otherwise,
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FCT POTENTIAL SOLVER

Figure 4. The flux function p r sin OA# for a self-similar spherical expansion of a magnetic bubbleembedded in a stellar envelope is displayed, in its initial and exact final states (top) and in the final statesproduced by the FCT solvers (bottom). The domain r0 :5 r < 5r, 0 < 0 < I is shown as projected againstthe sky; the shaded region is r < r. The flux function is contoured at 10%, 20%,..., 90% of its peak initial
value.

for r, = 0.55 ro and r2 = 0.95 o. The simulations were carried out for times 2to <5 t < 5to, on the
spatial grid r0 :5 r < 5r, 0 < 0 < 7r/2. The 600 timesteps used correspond to an average Courant
number of about 0.25, and the grid spacing on the 100 x 100 mesh increased linearly with r and
was uniform in 8. A predictor/corrector integration method was used to time-center the source
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terms and achieve second-order accuracy in time. Finally, the gravitational parameter GMt fr 3

was assigned the special value 2/3, for which both the mass density and the pressure are continuous

across the contact surface, and the flux constant ?Po was chosen to yield a minimum plasma 0 (ratio

of plasma to magnetic pressure) of unity.

The flux surfaces at the initial and final times are shown in the upper panel of Fig. 4. Shown

in the bottom panel are the solutions produced by the FCT field and potential solvers. They

are quite similar, both qualitatively and quantitatively, although the field solver yields notably

smoother flux surfaces. The errors in the flux function (8%) and the field components (20%) are

essentially identical for the two solvers. As in the passive advection test, the potential solver yields

the less accurate current density, by errors of 113% to 88%. Both solvers produce local current

reversals in this problem, however - the potential solver at the 90% level and the field solver at

the 10% level. Contour plots of the current densities are not shown because they are not very

instructive. Numerically generated small-scale structures dominate the current distribution within

the magnetic bubble.

Other numerical experiments have been carried out, and merit brief mention here. First,

calculations performed with the bare low- and high-order schemes of the field solver exhibited

much larger errors. In the self-similar magnetic-bubble test, for example, each scheme produced

an error of about 60% in the flux function, compared to 8% when FCT is used to interpolate

between them. Second, a planar magnetoacoustic shock propagated over a distance of 60 zones

broadened from an initial two-zone discontinuity to a four-zone transition from pre- to post-

shock conditions. The error in the magnetic field, evaluated over those four zones centered on

the shock front, was less than 5% for the field solver. Third, the problem of the expansion of a

cylinder of hot plasma against a uniform magnetic field, for which no analytic solution is known,

was simulated for a 50:1 pressure ratio. In this test for monotonicity violations, the field solver

produced undershoots and overshoots in the solution of only a few percent, despite the extreme

conditions which prevailed early in the calculation. Finally, Evans and Hawley's [12] monotone

upwind scheme for the hydromagnetic equation was applied to several of these problems. Their

algorithm is not as accurate as the high-order scheme of the FCT solver, and consequently produced

solutions with consistently larger errors, albeit with smoother (more diffuse) current profiles.
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